dmtcs:2533 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2015,
DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
-
https://doi.org/10.46298/dmtcs.2533
The Cambrian Hopf AlgebraArticle
Authors: G. Chatel ; V. Pilaud
NULL##NULL
G. Chatel;V. Pilaud
Cambrian trees are oriented and labeled trees which fulfill local conditions around each node generalizing the conditions for classical binary search trees. Based on the bijective correspondence between signed permutations and leveled Cambrian trees, we define the Cambrian Hopf algebra generalizing J.-L. Loday and M. Ronco’s algebra on binary trees. We describe combinatorially the products and coproducts of both the Cambrian algebra and its dual in terms of operations on Cambrian trees. Finally, we define multiplicative bases of the Cambrian algebra and study structural and combinatorial properties of their indecomposable elements.