Henri Mühle ; Nathan Williams - Tamari Lattices for Parabolic Quotients of the Symmetric Group

dmtcs:2534 - Discrete Mathematics & Theoretical Computer Science, January 1, 2015, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) - https://doi.org/10.46298/dmtcs.2534
Tamari Lattices for Parabolic Quotients of the Symmetric GroupConference paper

Authors: Henri Mühle ORCID1; Nathan Williams ORCID2

  • 1 Laboratoire d'informatique Algorithmique : Fondements et Applications
  • 2 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

[en]
We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups.

[fr]
Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
Section: Proceedings
Published on: January 1, 2015
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Symmetric group, Parabolic quotients, Tamari lattice, Noncrossing partitions, Nonnesting partitions, Aligned elements, 231-avoiding permutations
Funding:
    Source : OpenAIRE Graph
  • Funder: French National Research Agency (ANR); Code: ANR-10-LABX-0098

1 Document citing this article

Consultation statistics

This page has been seen 468 times.
This article's PDF has been downloaded 513 times.