Guillaume Chapuy ; Maciej Dołęga
-
A bijection for rooted maps on general surfaces (extended abstract)
dmtcs:2536 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2015,
DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
-
https://doi.org/10.46298/dmtcs.2536
A bijection for rooted maps on general surfaces (extended abstract)Conference paper
Authors: Guillaume Chapuy 1; Maciej Dołęga 2
NULL##NULL
Guillaume Chapuy;Maciej Dołęga
1 Laboratoire d'informatique Algorithmique : Fondements et Applications
2 Instytut Matematyczny
We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, orientable or non-orientable. This general construction requires new ideas and is more delicate than the special orientable case, but carries the same information. It thus gives a uniform combinatorial interpretation of the counting exponent $\frac{5(h-1)}{2}$ for both orientable and non-orientable maps of Euler characteristic $2-2h$ and of the algebraicity of their generating functions. It also shows the universality of the renormalization factor $n$<sup>¼</sup> for the metric of maps, on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation of size $n$ on any fixed surface converge in distribution. Finally, it also opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.