Karola Mészáros - Triangulations of root polytopes and reduced forms (Extended abstract)

dmtcs:2681 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2681
Triangulations of root polytopes and reduced forms (Extended abstract)Conference paper

Authors: Karola Mészáros 1

  • 1 Department of Mathematics [MIT]

[en]
The type $A_n$ root polytope $\mathcal{P}(A_n^+)$ is the convex hull in $\mathbb{R}^{n+1}$ of the origin and the points $e_i-e_j$ for $1 \leq i < j \leq n+1$. Given a tree $T$ on vertex set $[n+1]$, the associated root polytope $\mathcal{P}(T)$ is the intersection of $\mathcal{P}(A_n^+)$ with the cone generated by the vectors $e_i-e_j$, where $(i, j) \in E(T)$, $i < j$. The reduced forms of a certain monomial $m[T]$ in commuting variables $x_{ij}$ under the reduction $x_{ij} x_{jk} \to x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}$, can be interpreted as triangulations of $\mathcal{P}(T)$. If we allow variables $x_{ij}$ and$x_{kl}$ to commute only when $i, j, k, l$ are distinct, then the reduced form of $m[T]$ is unique and yields a canonical triangulation of $\mathcal{P}(T)$ in which each simplex corresponds to a noncrossing alternating forest.

[fr]
Le polytope des racines $\mathcal{P}(A_n^+)$ de type $A_n$ est l'enveloppe convexe dans $\mathbb{R}^{n+1}$ de l'origine et des points $e_i-e_j$ pour $1 \leq i < j \leq n+1$. Étant donné un arbre $T$ sur l'ensemble des sommets $[n+1]$, le polytope des racines associé, $\mathcal{P}(T)$, est l'intersection de $\mathcal{P}(A_n^+)$ avec le cône engendré par les vecteurs $e_i-e_j$, où $(i, j) \in E(T)$, $i < j$. Les formes réduites d'un certain monôme $m[T]$ en les variables commutatives $x_{ij}$ sous la reduction $x_{ij} x_{jk} \to x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}$ peuvent être interprétées comme des triangulations de $\mathcal{P}(T)$. Si on impose la restriction que les variables $x_{ij}$ et $x_{kl}$ commutent seulement lorsque les indices $i, j, k, l$ sont distincts, alors la forme réduite de $m[T]$ est unique et produit une triangulation canonique de $\mathcal{P}(T)$ dans laquelle chaque simplexe correspond à une forêt alternée non croisée.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] root polytope, triangulation, volume, Ehrhart polynomial, reduced form, noncrossing alternating tree

Consultation statistics

This page has been seen 378 times.
This article's PDF has been downloaded 585 times.