Kento Nakada - $q$-Hook formula of Gansner type for a generalized Young diagram

dmtcs:2684 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2684
$q$-Hook formula of Gansner type for a generalized Young diagramConference paper

Authors: Kento Nakada 1

  • 1 Wakkanai Hokusei Gakuen University

[en]
The purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give a generalization of P. MacMahon's identity as an application of the $q$-hook formula.

[fr]
Le but de ce papier est présenter la $q$-hook formule de type Gansner pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor. Cela donne une généralisation de grande envergure d'une hook length formule dû à J. S. Frame, G. de B. Robinson, et R. M. Thrall. Furthurmore, nous donnons une généralisation de l'identité de P. MacMahon comme une application de la $q$-hook formule.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Generalized Young diagrams, Trace generating functions, $q$-hook formula, Kac-Moody Lie algebra, P. MacMahon's identity

1 Document citing this article

Consultation statistics

This page has been seen 392 times.
This article's PDF has been downloaded 664 times.