Gregg Musiker ; Ralf Schiffler - Cluster algebras of unpunctured surfaces and snake graphs

dmtcs:2685 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2685
Cluster algebras of unpunctured surfaces and snake graphsConference paper

Authors: Gregg Musiker 1; Ralf Schiffler 2

  • 1 Department of Mathematics [MIT]
  • 2 Department of Mathematics [Storrs]

[en]
We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph $G_{T,\gamma}$ that is constructed from the surface by recursive glueing of elementary pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs of the graph $G_{T,\gamma}$ .

[fr]
Nous étudions des algèbres amassées avec coefficients principaux associées aux surfaces. Nous présentons une formule directe pour les développements de Laurent des variables amassées dans ces algèbres en terme de couplages parfaits d'un certain graphe $G_{T,\gamma}$ que l'on construit a partir de la surface en recollant des pièces élémentaires que l'on appelle carreaux. Nous donnons aussi une seconde formule pour ces développements en termes de sous-graphes de $G_{T,\gamma}$ .


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cluster algebra, triangulated surface, principal coefficients, F-polynomial, height function, snake graphs
Funding:
    Source : OpenAIRE Graph
  • PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0703691
  • Cluster algebras and tilting theory; Funder: National Science Foundation; Code: 0700358

Consultation statistics

This page has been seen 890 times.
This article's PDF has been downloaded 581 times.