Myrto Kallipoliti - The absolute order on the hyperoctahedral group

dmtcs:2689 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2689
The absolute order on the hyperoctahedral groupArticle

Authors: Myrto Kallipoliti ORCID1

  • 1 Department of Mathematics [Athens]

The absolute order on the hyperoctahedral group $B_n$ is investigated. It is shown that every closed interval in this order is shellable, those closed intervals which are lattices are characterized and their zeta polynomials are computed. Moreover, using the notion of strong constructibility, it is proved that the order ideal generated by the Coxeter elements of $B_n$ is homotopy Cohen-Macaulay and the Euler characteristic of the order complex of the proper part of this ideal is computed. Finally, an example of a non Cohen-Macaulay closed interval in the absolute order on the group $D_4$ is given and the closed intervals of $D_n$ which are lattices are characterized.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: Coxeter group,hyperoctaherdal group,absolute order,Cohen-Macaulay poset,shellability,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Deep Drug Discovery and Deployment; Code: PTDC/CCI-BIO/29266/2017

5 Documents citing this article

Consultation statistics

This page has been seen 227 times.
This article's PDF has been downloaded 484 times.