Michael Joswig ; Benjamin Müller ; Andreas Paffenholz
-
polymake and Lattice Polytopes
dmtcs:2690 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2690
polymake and Lattice PolytopesArticle
Authors: Michael Joswig 1; Benjamin Müller 2; Andreas Paffenholz 2
NULL##NULL##NULL
Michael Joswig;Benjamin Müller;Andreas Paffenholz
1 Institut für Mathematik [Berlin]
2 Institut für Mathematik
The $\mathtt{polymake}$ software system deals with convex polytopes and related objects from geometric combinatorics. This note reports on a new implementation of a subclass for lattice polytopes. The features displayed are enabled by recent changes to the $\mathtt{polymake}$ core, which will be discussed briefly.
Bernard Mourrain;Simon Telen;Marc Van Barel, 2019, Truncated normal forms for solving polynomial systems: Generalized and efficient algorithms, Journal of Symbolic Computation, 102, pp. 63-85, 10.1016/j.jsc.2019.10.009, https://doi.org/10.1016/j.jsc.2019.10.009.
Andreas Paffenholz, Springer eBooks, polyDB: A Database for Polytopes and Related Objects, pp. 533-547, 2017, 10.1007/978-3-319-70566-8_23.
Benjamin Nill;Andreas Paffenholz, 2011, Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 52, 2, pp. 297-304, 10.1007/s13366-011-0041-y.
Benjamin Nill;Günter M. Ziegler, 2011, Projecting Lattice Polytopes Without Interior Lattice Points, arXiv (Cornell University), 36, 3, pp. 462-467, 10.1287/moor.1110.0503, http://arxiv.org/abs/1101.4292.
Christian Haase;Benjamin Lorenz;Andreas Paffenholz, Lecture notes in computer science, Generating Smooth Lattice Polytopes, pp. 315-328, 2010, 10.1007/978-3-642-15582-6_51.