Chip-Firing And A Devil's StaircaseConference paperAuthors: Lionel Levine
1
0000-0003-0105-6754
Lionel Levine
- 1 Department of Mathematics [MIT]
The devil's staircase ― a continuous function on the unit interval $[0,1]$ which is not constant, yet is locally constant on an open dense set ― is the sort of exotic creature a combinatorialist might never expect to encounter in "real life.'' We show how a devil's staircase arises from the combinatorial problem of parallel chip-firing on the complete graph. This staircase helps explain a previously observed "mode locking'' phenomenon, as well as the surprising tendency of parallel chip-firing to find periodic states of small period.
Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Circle map, fixed-energy sandpile, mode locking, non-ergodicity, parallel chip-firing, rotation number, short period attractors