Lionel Levine
-
Chip-Firing And A Devil's Staircase
dmtcs:2693 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2693
Chip-Firing And A Devil's StaircaseArticle
Authors: Lionel Levine 1
0000-0003-0105-6754
Lionel Levine
1 Department of Mathematics [MIT]
The devil's staircase ― a continuous function on the unit interval $[0,1]$ which is not constant, yet is locally constant on an open dense set ― is the sort of exotic creature a combinatorialist might never expect to encounter in "real life.'' We show how a devil's staircase arises from the combinatorial problem of parallel chip-firing on the complete graph. This staircase helps explain a previously observed "mode locking'' phenomenon, as well as the surprising tendency of parallel chip-firing to find periodic states of small period.