Elmar Teufl ; Stephan Wagner - Spanning forests, electrical networks, and a determinant identity

dmtcs:2699 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2699
Spanning forests, electrical networks, and a determinant identityConference paper

Authors: Elmar Teufl 1; Stephan Wagner 2

  • 1 Fakultät für Mathematik = Faculty of Mathematics [Bielefeld]
  • 2 Department of Mathematical Sciences [Matieland, Stellenbosch Uni.]

[en]
We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor determinants of a Laplace matrix, for which we provide two different (combinatorial as well as algebraic) proofs in the simplest case. Furthermore, we discuss the connections to electrical networks and the enumeration of spanning trees in sequences of self-similar graphs.

[fr]
Nous visons à généraliser un théorème sur le nombre de forêts couvrantes d'un graphe fortement symétrique au cas des graphes asymétriques. Nous montrons que cela peut être obtenu au moyen d'une identité sur les déterminants mineurs d'une matrice Laplacienne, pour laquelle nous donnons deux preuves différentes (combinatoire ou bien algébrique) dans le cas le plus simple. De plus, nous discutons les relations avec des réseaux électriques et l'énumération d'arbres couvrants dans de suites de graphes autosimilaires.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] spanning forest, electrical network, Laplace matrix, determinant identity

2 Documents citing this article

Consultation statistics

This page has been seen 424 times.
This article's PDF has been downloaded 450 times.