[en]
We introduce a combinatorial way of calculating the Hilbert series of bigraded $S_n$-modules as a weighted sum over standard Young tableaux in the hook shape case. This method is based on Macdonald formula for Hall-Littlewood polynomial and extends the result of $A$. Garsia and $C$. Procesi for the Hilbert series when $q=0$. Moreover, we give the way of associating the fillings giving the monomial terms of Macdonald polynomials to the standard Young tableaux.
[fr]
Nous introduisons une méthode combinatoire pour calculer la série de Hilbert de modules bigradués de $S_n$ comme une somme pondérée sur les tableaux de Young standards à la forme crochet. Cette méthode se fonde sur la formule Macdonald pour les polynômes Hall-Littlewood et généralise un résultat de $A$. Garsia et $C$. Procesi pour la série de Hilbert dans le cas $q=0$. De plus, nous proposons une méthode pour associer aux tableaux de Young standards les remplissages des monômes des polynômes de Macdonald.