Christopher Severs ; Jacob White - The Discrete Fundamental Group of the Associahedron

dmtcs:2712 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2712
The Discrete Fundamental Group of the AssociahedronConference paper

Authors: Christopher Severs 1; Jacob White 1

  • 1 School of Mathematical and Statistical Sciences (Arizona, Tempe)

[en]
The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete homotopy theory, that is we consider 5-cycles in the 1-skeleton of the associahedron to be combinatorial holes, but 4-cycles to be contractible. We give a simple description of the equivalence classes of 5-cycles in the 1-skeleton and then identify a set of 5-cycles from which we may produce all other cycles. This set of 5-cycle equivalence classes turns out to be the generating set for the abelianization of the discrete fundamental group of the associahedron. In this paper we provide presentations for the discrete fundamental group and the abelianization of the discrete fundamental group. We also discuss applications to cluster algebras as well as generalizations to type B and D associahedra. \par

[fr]
L'associahèdre est un objet bien etudié que l'on retrouve dans plusieurs contextes. Par exemple, il est associé à la théorie des opérades, à l'étude des partitions non-croisées, à la théorie des treillis et plus récemment aux algèbres dámas. Nous étudions cet objet par le biais de la théorie des homotopies discretes. En bref cette théorie signifie qu'un cycle de longueur 5 (sur le squelette de l'associahèdre) est considéré comme étant le bord d'un trou combinatoire, alors qu'un cycle de longueur 4 peut être contracté sans problème. Les classes d'homotopies discrètes sont donc des classes d'équivalence de cycles de longueurs 5. Nous donnons une description simple de ces classes d'équivalence et identifions un ensemble de générateurs du groupe correspondant (abélien) d'homotopies discrètes. Nous d'ecrivons également les liens entre notre construction et les algèbres d'amas.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] associahedron, discrete fundamental group, conic arrangements

Consultation statistics

This page has been seen 399 times.
This article's PDF has been downloaded 527 times.