Michelle Snider - A Combinatorial Approach to Multiplicity-Free Richardson Subvarieties of the Grassmannian

dmtcs:2713 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2713
A Combinatorial Approach to Multiplicity-Free Richardson Subvarieties of the GrassmannianConference paper

Authors: Michelle Snider 1

[en]
We consider Buch's rule for K-theory of the Grassmannian, in the Schur multiplicity-free cases classified by Stembridge. Using a result of Knutson, one sees that Buch's coefficients are related to Möbius inversion. We give a direct combinatorial proof of this by considering the product expansion for Grassmannian Grothendieck polynomials. We end with an extension to the multiplicity-free cases of Thomas and Yong.

[fr]
On examine la règle de Buch pour la K-théorie de la variété grassmannienne dans les cas sans multiplicité de Schur, qui ont étés classifiés par Stembridge. En utilisant un résultat de Knutson, on démontre que les coefficients de Buch sont liés à l'inversion de Möbius. On en fait une preuve directe et combinatoire qui passe par le developpement de produits de polynômes de Grothendieck. Pour conclure, on donne une application de cette théorie aux cas sans multiplicité de Thomas et Yong.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Schur multiplicity free, Grassmannian, Richardson varieties, Grothendieck polynomials

1 Document citing this article

Consultation statistics

This page has been seen 289 times.
This article's PDF has been downloaded 550 times.