Colored Tutte polynomials and composite knotsConference paperAuthors: Gábor Hetyei
1; Yuanan Diao
1; Kenneth Hinson
1
NULL##0000-0003-4411-3755##NULL
Gábor Hetyei;Yuanan Diao;Kenneth Hinson
- 1 Department of Mathematics and Statistics
[en]
Surveying the results of three recent papers and some currently ongoing research, we show how a generalization of Brylawski's tensor product formula to colored graphs may be used to compute the Jones polynomial of some fairly complicated knots and, in the future, even virtual knots.
[fr]
En faisant une revue de trois articles récents et de la recherche en cours, nous montrons comment une généralisation aux graphes colorés de la formule de Brylawski sur le produit tensoriel peut être utilisée à calculer le polynôme de Jones de quelques nœuds et, dans la future, même de quelques nœuds virtuels, bien compliqués.
Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] knots, Jones polynomial, Tutte polynomial, signed graphs, tensor product of matroids
Funding:
Source : OpenAIRE Graph- Collaborative Research: Exploring the Space of Large Knots and Links; Funder: National Science Foundation; Code: 0712958