Adrien Boussicault ; Valentin Féray - Application of graph combinatorics to rational identities of type $A^\ast$

dmtcs:2722 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2722
Application of graph combinatorics to rational identities of type $A^\ast$Conference paper

Authors: Adrien Boussicault 1; Valentin Féray 1

[en]
To a word $w$, we associate the rational function $\Psi_w = \prod (x_{w_i} - x_{w_{i+1}})^{-1}$. The main object, introduced by C. Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations of the variables. The sets of permutations that we consider are the linear extensions of oriented graphs. We explain how to compute this rational function, using the combinatorics of the graph $G$. We also establish a link between an algebraic property of the rational function (the factorization of the numerator) and a combinatorial property of the graph (the existence of a disconnecting chain).

[fr]
À un mot $w$, nous associons la fonction rationnelle $\Psi_w = \prod (x_{w_i} - x_{w_{i+1}})^{-1}$. L'objet principal, introduit par C. Greene pour généraliser des identités rationnelles liées à la règle de Murnaghan-Nakayama, est une somme de ses images par certaines permutations des variables. Les ensembles de permutations considérés sont les extensions linéaires des graphes orientés. Nous expliquons comment calculer cette fonction rationnelle à partir de la combinatoire du graphe $G$. Nous établissons ensuite un lien entre une propriété algébrique de la fonction rationnelle (la factorisation du numérateur) et une propriété combinatoire du graphe (l'existence d'une chaîne le déconnectant).


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Rational functions, posets, maps

Consultation statistics

This page has been seen 338 times.
This article's PDF has been downloaded 375 times.