Mireille Bousquet-Mélou ; Anders Claesson ; Mark Dukes ; Sergey Kitaev - Unlabeled $(2+2)$-free posets, ascent sequences and pattern avoiding permutations

dmtcs:2723 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2723
Unlabeled $(2+2)$-free posets, ascent sequences and pattern avoiding permutationsConference paper

Authors: Mireille Bousquet-Mélou ORCID1; Anders Claesson 2; Mark Dukes ORCID3,4; Sergey Kitaev ORCID5

[en]
We present statistic-preserving bijections between four classes of combinatorial objects. Two of them, the class of unlabeled $(\textrm{2+2})$-free posets and a certain class of chord diagrams (or involutions), already appeared in the literature, but were apparently not known to be equinumerous. The third one is a new class of pattern avoiding permutations, and the fourth one consists of certain integer sequences called $\textit{ascent sequences}$. We also determine the generating function of these classes of objects, thus recovering a non-D-finite series obtained by Zagier for chord diagrams. Finally, we characterize the ascent sequences that correspond to permutations avoiding the barred pattern $3\bar{1}52\bar{4}$, and enumerate those permutations, thus settling a conjecture of Pudwell.

[fr]
Nous présentons des bijections, transportant de nombreuses statistiques, entre quatre classes d'objets. Deux d'entre elles, la classe des EPO (ensembles partiellement ordonnés) sans motif $(\textrm{2+2})$ et une certaine classe d'involutions, sont déjà apparues dans la littérature. La troisième est une classe de permutations à motifs exclus, et la quatrième une classe de suites que nous appelons $\textit{suites à montées}$. Nous déterminons ensuite la série génératrice de ces classes, retrouvant ainsi un résultat prouvé par Zagier pour les involutions sus-mentionnées. La série obtenue n'est pas D-finie. Apparemment, le fait qu'elle compte aussi les EPO sans motif $(\textrm{2+2})$ est nouveau. Finalement, nous caractérisons les suites à montées qui correspondent aux permutations évitant le motif barré $3\bar{1}52\bar{4}$ et énumérons ces permutations, ce qui démontre une conjecture de Pudwell.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $(\mathrm{2+2})$-free poset, interval order, pattern-avoidance, enumeration, ascent sequence, kernel method
Funding:
    Source : OpenAIRE Graph
  • Funder: French National Research Agency (ANR); Code: ANR-05-BLAN-0372

1 Document citing this article

Consultation statistics

This page has been seen 445 times.
This article's PDF has been downloaded 388 times.