Jean-Christophe Aval ; Philippe Duchon
-
Enumeration of alternating sign matrices of even size (quasi)-invariant under a quarter-turn rotation
dmtcs:2726 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2009,
DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
-
https://doi.org/10.46298/dmtcs.2726Enumeration of alternating sign matrices of even size (quasi)-invariant under a quarter-turn rotationConference paper
Authors: Jean-Christophe Aval 1; Philippe Duchon 1
NULL##NULL
Jean-Christophe Aval;Philippe Duchon
[en]
The aim of this work is to enumerate alternating sign matrices (ASM) that are quasi-invariant under a quarter-turn. The enumeration formula (conjectured by Duchon) involves, as a product of three terms, the number of unrestrited ASm's and the number of half-turn symmetric ASM's.
[fr]
L'objet de ce travail est d'énumérer les matrices à signes alternants (ASM) quasi-invariantes par rotation d'un quart-de-tour. La formule d'énumération, conjecturée par Duchon, fait apparaître trois facteurs, comprenant le nombre d'ASM quelconques et le nombre d'ASM invariantes par demi-tour.
Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] sign matrices, enumeration