Michael Albert ; Julian West - Universal cycles for permutation classes

dmtcs:2727 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2727
Universal cycles for permutation classesConference paper

Authors: Michael Albert 1; Julian West 2

  • 1 Department of Computer Science, University of Otago
  • 2 Dept. of Mathematics, University of Victoria

[en]
We define a universal cycle for a class of $n$-permutations as a cyclic word in which each element of the class occurs exactly once as an $n$-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of permutations of length $3$, or of a set of permutations of mixed lengths $3$ and $4$.

[fr]
Nous définissons un cycle universel pour une classe de $n$-permutations comme un mot cyclique dans lequel chaque élément de la classe apparaît une unique fois comme $n$-facteur. Nous donnons un résultat général pour les classes cycliquement closes, et détaillons la situation où la classe de permutations est définie par motifs exclus, avec des motifs de taille $3$, ou bien à la fois des motifs de taille $3$ et de taille $4$.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Restricted permutations, Universal cycles, Eulerian circuits, DeBruijn graphs

2 Documents citing this article

Consultation statistics

This page has been seen 525 times.
This article's PDF has been downloaded 463 times.