Guillaume Chapuy - A new combinatorial identity for unicellular maps, via a direct bijective approach.

dmtcs:2747 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) - https://doi.org/10.46298/dmtcs.2747
A new combinatorial identity for unicellular maps, via a direct bijective approach.Conference paper

Authors: Guillaume Chapuy 1

[en]
We give a bijective operation that relates unicellular maps of given genus to unicellular maps of lower genus, with distinguished vertices. This gives a new combinatorial identity relating the number $\epsilon_g(n)$ of unicellular maps of size $n$ and genus $g$ to the numbers $\epsilon _j(n)$'s, for $j \lt g$. In particular for each $g$ this enables to compute the closed-form formula for $\epsilon_g(n)$ much more easily than with other known identities, like the Harer-Zagier formula. From the combinatorial point of view, we give an explanation to the fact that $\epsilon_g(n)=R_g(n) \mathrm{Cat}(n)$, where $\mathrm{Cat}(n$) is the $n$-th Catalan number and $R_g$ is a polynomial of degree $3g$, with explicit interpretation.

[fr]
On décrit une opération bijective qui relie les cartes à une face de genre donné à des cartes à une face de genre inférieur, portant des sommets marqués. Cela conduit à une nouvelle identité combinatoire reliant le nombre $\epsilon_g(n)$ de cartes à une face de taille $n$ et genre $g$ aux nombres $\epsilon _j(n)$, pour $j \lt g$. En particulier, pour tout $g$, cela permet de calculer la formule close donnant $\epsilon_g(n)$ bien plus facilement qu'à l'aide des autres identités connues, comme la formule d'Harer-Zagier. Du point de vue combinatoire, nous donnons une explication au fait que $\epsilon _g(n)=R_g(n) \mathrm{Cat}(n)$, où $\mathrm{Cat}(n)$ est le $n$ième nombre de Catalan et $R_g$ est un polynôme de degré $3g$, à l'interprétation explicite.


Volume: DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
Section: Proceedings
Published on: January 1, 2009
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Polygon gluings, combinatorial identity, bijection
Funding:
    Source : OpenAIRE Graph
  • Combinatorial methods, from enumerative topology to random discrete structures and compact data representations.; Funder: European Commission; Code: 208471

41 Documents citing this article

Consultation statistics

This page has been seen 403 times.
This article's PDF has been downloaded 380 times.