Philippe Jacquet ; Paul Muhlethaler - Geometric Bucket Trees: Analysis of Linear Bucket Tree

dmtcs:2764 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) - https://doi.org/10.46298/dmtcs.2764
Geometric Bucket Trees: Analysis of Linear Bucket TreeArticle

Authors: Philippe Jacquet 1; Paul Muhlethaler 1

  • 1 High performance communication

We analyse the average number of buckets in a Linear Bucket tree created by $n$ points uniformly dispatched on an interval of length $y$. A new bucket is created when a point does not fall in an existing bucket. The bucket is the interval of length 2 centered on the point. We illustrate this concept by an interesting tale of how the moon's surface took on its present form. Thanks to an explicit Laplace transform of the Poissonized sequence, and the use of dePoissonization tools, we obtain the explicit asymptotic expansions of the average number of buckets in most of the asymptotic regimes relative to $n$ and $y$.


Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: bucket tree,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

Consultation statistics

This page has been seen 241 times.
This article's PDF has been downloaded 204 times.