Matthew Roberts
-
Almost sure asymptotics for the random binary search tree
dmtcs:2775 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
-
https://doi.org/10.46298/dmtcs.2775
Almost sure asymptotics for the random binary search treeArticle
Authors: Matthew Roberts 1
NULL
Matthew Roberts
1 Laboratoire de Probabilités et Modèles Aléatoires
We consider a (random permutation model) binary search tree with $n$ nodes and give asymptotics on the $\log$ $\log$ scale for the height $H_n$ and saturation level $h_n$ of the tree as $n \to \infty$, both almost surely and in probability. We then consider the number $F_n$ of particles at level $H_n$ at time $n$, and show that $F_n$ is unbounded almost surely.
Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Méthodes Aléatoires et Déterministes pour les processus de COllision, coalescence, de Fragmentation; Funder: French National Research Agency (ANR); Code: ANR-08-BLAN-0220
Bibliographic References
4 Documents citing this article
Radu Dascaliuc;Nicholas Michalowski;Enrique Thomann;Edward C. Waymire, Springer proceedings in mathematics & statistics, Complex Burgers Equation: A Probabilistic Perspective, pp. 138-170, 2019, 10.1007/978-981-15-0294-1_6.
Brigitte Chauvin;Julien Clément;Danièle Gardy, Mathématiques et applications, Arbres binaires de recherche, pp. 217-279, 2018, 10.1007/978-3-319-93725-0_6.
Pierre-Antoine Corre, 2016, Oscillations in the height of the Yule tree and application to the binary search tree, arXiv (Cornell University), 51, 1, pp. 90-120, 10.1002/rsa.20701, https://arxiv.org/abs/1411.4270.