Alois Panholzer ; Georg Seitz - Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model

dmtcs:2778 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) - https://doi.org/10.46298/dmtcs.2778
Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network modelArticle

Authors: Alois Panholzer 1; Georg Seitz 1

  • 1 Institut für Diskrete Mathematik und Geometrie [Wien]

We introduce a random graph model based on $k$-trees, which can be generated by applying a probabilistic preferential attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis of important parameters for the network model such as the degree, the local clustering coefficient and the number of descendants of the nodes and root-to-node distances. We do not only obtain results for random nodes, but in particular we also get a precise description of the behaviour of parameters for the $j$-th inserted node in a random $k$-tree of size $n$, where $j=j(n)$ might grow with $n$. The approach presented is not restricted to this specific $k$-tree model, but can also be applied to other evolving $k$-tree models.


Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: limiting distributions,network model,increasing $k$-trees,degree distribution,local clustering coefficient,root-to-node distances,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

2 Documents citing this article

Consultation statistics

This page has been seen 242 times.
This article's PDF has been downloaded 217 times.