Antoine Genitrini ; Bernhard Gittenberger
-
No Shannon effect on probability distributions on Boolean functions induced by random expressions
dmtcs:2784 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
-
https://doi.org/10.46298/dmtcs.2784
No Shannon effect on probability distributions on Boolean functions induced by random expressionsArticle
Authors: Antoine Genitrini 1; Bernhard Gittenberger 2
0000-0002-5480-0236##NULL
Antoine Genitrini;Bernhard Gittenberger
1 Parallélisme, Réseaux, Systèmes, Modélisation
2 Institut für Diskrete Mathematik und Geometrie [Wien]
The Shannon effect states that "almost all'' Boolean functions have a complexity close to the maximal possible for the uniform probability distribution. In this paper we use some probability distributions on functions, induced by random expressions, and prove that this model does not exhibit the Shannon effect.
Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Veronika Daxner;Antoine Genitrini;Bernhard Gittenberger;Cecile Mailler, 2016, The relation between tree size complexity and probability for Boolean functions generated by uniform random trees, arXiv (Cornell University), 10, 2, pp. 408-446, 10.2298/aadm160715015d, https://arxiv.org/abs/1407.0501.
Antoine Genitrini;Cécile Mailler, Lecture notes in computer science, Equivalence Classes of Random Boolean Trees and Application to the Catalan Satisfiability Problem, pp. 466-477, 2014, 10.1007/978-3-642-54423-1_41.