Thomas Fernique ; Damien Regnault - Stochastic Flips on Dimer Tilings

dmtcs:2803 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) - https://doi.org/10.46298/dmtcs.2803
Stochastic Flips on Dimer TilingsArticle

Authors: Thomas Fernique 1; Damien Regnault ORCID1

  • 1 Laboratoire d'informatique Fondamentale de Marseille

This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


Volume: DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: Complexity,Dimer tiling,Flip,Markov chain,Quasicrystal,Stopping time,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

2 Documents citing this article

Consultation statistics

This page has been seen 221 times.
This article's PDF has been downloaded 212 times.