Vít Jelínek ; Eva Jelínková ; Einar Steingrímsson - The Möbius function of separable permutations (extended abstract)

dmtcs:2805 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2805
The Möbius function of separable permutations (extended abstract)Conference paper

Authors: Vít Jelínek ORCID1; Eva Jelínková ORCID2; Einar Steingrímsson 1

  • 1 Institute of Mathematics
  • 2 Department of Applied Mathematics (KAM)

[en]
A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums or, equivalently, if it avoids the patterns 2413 and 3142. Using the notion of separating tree, we give a computationally efficient formula for the Möbius function of an interval $(q,p)$ in the poset of separable permutations ordered by pattern containment. A consequence of the formula is that the Möbius function of such an interval $(q,p)$ is bounded by the number of occurrences of $q$ as a pattern in $p$. The formula also implies that for any separable permutation $p$ the Möbius function of $(1,p)$ is either 0, 1 or -1.

[fr]
Une permutation est séparable si elle peut être générée á partir de la permutation 1 par des sommes directes et des sommes indirectes, ou de façon équivalente, si elle évite les motifs 2413 et 3142. En utilisant le concept de l'arbre séparant, nous donnons une formule pour le calcul efficace de la fonction de Möbius d'un intervalle de $(q, p)$ dans l'ensemble partiellement ordonné des permutations séparables. Une conséquence est que la fonction de Möbius de $(q,p)$ pour $q$ et $p$ séparables est bornée par le nombre d'occurrences de $q$ comme un motif en $p$. Nous montrons aussi que pour une permutation $p$ séparable, la fonction de Möbius de $(1,p)$ est soit 0, 1 ou -1.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Möbius function, pattern poset, separable permutations.

Consultation statistics

This page has been seen 374 times.
This article's PDF has been downloaded 348 times.