Christopher J. Hillar ; Lionel Levine ; Darren Rhea - Word equations in a uniquely divisible group

dmtcs:2807 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2807
Word equations in a uniquely divisible groupArticle

Authors: Christopher J. Hillar 1; Lionel Levine ORCID2; Darren Rhea 3

We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: absolutely irreducible,polynomials over finite fields,solutions in radicals,uniquely divisible group,word equation,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Mathematical Sciences Research Institute 5 Year Proposal; Funder: National Science Foundation; Code: 0441170

1 Document citing this article

Consultation statistics

This page has been seen 210 times.
This article's PDF has been downloaded 194 times.