Jang Soo Kim - Chain enumeration of k-divisible noncrossing partitions of classical types

dmtcs:2813 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2813
Chain enumeration of k-divisible noncrossing partitions of classical typesConference paper

Authors: Jang Soo Kim 1

  • 1 Laboratoire d'informatique Algorithmique : Fondements et Applications

[en]
We give combinatorial proofs of the formulas for the number of multichains in the $k-divisible$ noncrossing partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and Müller. We also prove Armstrong's conjecture on the zeta polynomial of the poset of k-divisible noncrossing partitions of type A invariant under the 180° rotation in the cyclic representation.

[fr]
Nous donnons une preuve combinatoire de la formule pour le nombre de multichaînes dans les partitions $k-divisibles$ non-croisées de type classique avec certaines conditions sur le rang et la taille du bloc due à Krattenthaler et Müller. Nous prouvons aussi la conjecture d'Amstrong sur le polynôme zeta du poset des partitions k-divisibles non-croisées de type A invariantes par la rotation de 180° dans la représentation cyclique.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] noncrossing partitions, chain enumeration

Consultation statistics

This page has been seen 342 times.
This article's PDF has been downloaded 289 times.