Eric Clark ; Richard Ehrenborg - The Frobenius Complex

dmtcs:2816 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2816
The Frobenius ComplexArticle

Authors: Eric Clark 1; Richard Ehrenborg ORCID1

  • 1 Department of Mathematics

Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers $\mathbb{Z}$, that is, for a sub-semigroup $\Lambda$ of the non-negative integers $(\mathbb{N},+)$, we define the order by $n \leq_{\Lambda} m$ if $m-n \in \Lambda$. When $\Lambda$ is generated by two relatively prime integers $a$ and $b$, we show that the order complex of an interval in the Frobenius poset is either contractible or homotopy equivalent to a sphere. We also show that when $\Lambda$ is generated by the integers $\{a,a+d,a+2d,\ldots,a+(a-1)d\}$, the order complex is homotopy equivalent to a wedge of spheres.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: order complex,homotopy type,Morse matching,cylindrical posets,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 212 times.
This article's PDF has been downloaded 257 times.