Anders Claesson ; Vít Jelínek ; Eva Jelínková ; Sergey Kitaev - Pattern avoidance in partial permutations (extended abstract)

dmtcs:2818 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2818
Pattern avoidance in partial permutations (extended abstract)Article

Authors: Anders Claesson 1; Vít Jelínek ORCID2; Eva Jelínková ORCID3; Sergey Kitaev 1

  • 1 The Mathematics Institute, Reyjavik University
  • 2 Institute of Mathematics
  • 3 Department of Applied Mathematics (KAM)

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A $\textit{partial permutation of length n with k holes}$ is a sequence of symbols $\pi = \pi_1 \pi_2 \cdots \pi_n$ in which each of the symbols from the set $\{1,2,\ldots,n-k\}$ appears exactly once, while the remaining $k$ symbols of $\pi$ are "holes''. We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length $k$ correspond to a Wilf-type equivalence class with respect to partial permutations with $(k-2)$ holes. Lastly, we enumerate the partial permutations of length $n$ with $k$ holes avoiding a given pattern of length at most four, for each $n \geq k \geq 1$.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: Baxter permutation,partial permutation,pattern avoidance,Wilf-equivalence,bijection,generating function,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 216 times.
This article's PDF has been downloaded 353 times.