Discrete Mathematics & Theoretical Computer Science |

- 1 Department of Mathematics [Berkeley]

We construct and study an embedded weighted balanced graph in $\mathbb{R}^{n+1}$ parametrized by a strictly increasing sequence of $n$ coprime numbers $\{ i_1, \ldots, i_n\}$, called the $\textit{tropical secant surface graph}$. We identify it with the tropicalization of a surface in $\mathbb{C}^{n+1}$ parametrized by binomials. Using this graph, we construct the tropicalization of the first secant variety of a monomial projective curve with exponent vector $(0, i_1, \ldots, i_n)$, which can be described by a balanced graph called the $\textit{tropical secant graph}$. The combinatorics involved in computing the degree of this classical secant variety is non-trivial. One earlier approach to this is due to K. Ranestad. Using techniques from tropical geometry, we give algorithms to effectively compute this degree (as well as its multidegree) and the Newton polytope of the first secant variety of any given monomial curve in $\mathbb{P}^4$.

Source: HAL:hal-01186248v1

Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)

Section: Proceedings

Published on: January 1, 2010

Imported on: January 31, 2017

Keywords: monomial curves,secant varieties,resolution graphs,tropical geometry,Newton polytope,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 200 times.

This article's PDF has been downloaded 333 times.