A Combinatorial Formula for Orthogonal Idempotents in the $0$-Hecke Algebra of $S_N$Conference paper
Authors: Tom Denton 1
NULL
Tom Denton
- 1 Department of Mathematics [Univ California Davis]
[en]
Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of the identity into orthogonal idempotents in the $0$-Hecke algebra of the symmetric group, $\mathbb{C}H_0(S_N)$. This construction is compatible with the branching from $H_0(S_{N-1})$ to $H_0(S_N)$.
[fr]
En s'appuyant sur le travail de P.N. Norton, nous donnons des formules combinatoires pour deux décompositions maximales de l'identité en idempotents orthogonaux dans l'algèbre de Hecke $H_0(S_N)$ du groupe symétrique à $q=0$. Ces constructions sont compatibles avec le branchement de $H_0(S_{N-1})$ à $H_0(S_N)$.
Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Iwahori-Hecke algebra, idempotents, semigroups, combinatorics, representation theory
Funding:
Source : OpenAIRE Graph- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652652
- EMSW21-VIGRE: Focus on Mathematics; Funder: National Science Foundation; Code: 0636297
- FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641