Paul-Olivier Dehaye - A note on moments of derivatives of characteristic polynomials

dmtcs:2823 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2823
A note on moments of derivatives of characteristic polynomialsConference paper

Authors: Paul-Olivier Dehaye ORCID1

  • 1 Department of Mathematics - ETH

[en]
We present a simple technique to compute moments of derivatives of unitary characteristic polynomials. The first part of the technique relies on an idea of Bump and Gamburd: it uses orthonormality of Schur functions over unitary groups to compute matrix averages of characteristic polynomials. In order to consider derivatives of those polynomials, we here need the added strength of the Generalized Binomial Theorem of Okounkov and Olshanski. This result is very natural as it provides coefficients for the Taylor expansions of Schur functions, in terms of shifted Schur functions. The answer is finally given as a sum over partitions of functions of the contents. One can also obtain alternative expressions involving hypergeometric functions of matrix arguments.

[fr]
Nous introduisons une nouvelle technique, en deux parties, pour calculer les moments de dérivées de polynômes caractéristiques. La première étape repose sur une idée de Bump et Gamburd et utilise l'orthonormalité des fonctions de Schur sur les groupes unitaires pour calculer des moyennes de polynômes caractéristiques de matrices aléatoires. La deuxième étape, qui est nécessaire pour passer aux dérivées, utilise une généralisation du théorème binomial due à Okounkov et Olshanski. Ce théorème livre les coefficients des séries de Taylor pour les fonctions de Schur sous la forme de "shifted Schur functions''. La réponse finale est donnée sous forme de somme sur les partitions de fonctions des contenus. Nous obtenons aussi d'autres expressions en terme de fonctions hypergéométriques d'argument matriciel.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] random matrix theory, hook-content formula, moment of characteristic polynomials, shifted Schur function, generalized Pochhammer symbol, hypergeometric function of matrix argument

2 Documents citing this article

Consultation statistics

This page has been seen 407 times.
This article's PDF has been downloaded 612 times.