Justin Lambright ; Mark Skandera - Combinatorial formulas for double parabolic R-polynomials

dmtcs:2825 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2825
Combinatorial formulas for double parabolic R-polynomialsConference paper

Authors: Justin Lambright 1; Mark Skandera ORCID2

  • 1 Lehigh University [Bethlehem]
  • 2 Department of Mathematics

[en]
The well-known R-polynomials in ℤ[q], which appear in Hecke algebra computations, are closely related to certain modified R-polynomials in ℕ[q] whose coefficients have simple combinatorial interpretations. We generalize this second family of polynomials, providing combinatorial interpretations for expressions arising in a much broader class of computations. In particular, we extend results of Brenti, Deodhar, and Dyer to new settings which include parabolic Hecke algebra modules and the quantum polynomial ring.

[fr]
Les bien connues polynômes-R en ℤ[q], qui apparaissent dans les calcules d'algébre de Hecke, sont relationés à certaines polynômes-R modifiés en ℕ[q], dont les coefficients ont simples interprétations combinatoires. Nous généralisons cette deuxième famille de polynômes, fournissant des interprétations combinatoires pour les expressions qui se posent dans une catégorie beaucoup plus vaste de calculs. En particulier, nous étendons des résultats de Brenti, Deodhar, et Dyer à des situations nouvelles, qui comprennent modules paraboliques pour l'algébre de Hecke, et l'anneau des polynômes quantiques.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Immanants, Kazhdan-Lusztig polynomials, quantum groups

Consultation statistics

This page has been seen 324 times.
This article's PDF has been downloaded 380 times.