Greta Panova - Bijective enumeration of permutations starting with a longest increasing subsequence

dmtcs:2829 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2829
Bijective enumeration of permutations starting with a longest increasing subsequenceConference paper

Authors: Greta Panova 1,2

[en]
We prove a formula for the number of permutations in $S_n$ such that their first $n-k$ entries are increasing and their longest increasing subsequence has length $n-k$. This formula first appeared as a consequence of character polynomial calculations in recent work of Adriano Garsia and Alain Goupil. We give two "elementary' bijective proofs of this result and of its q-analogue, one proof using the RSK correspondence and one only permutations.

[fr]
Nous prouvons une formule pour le nombre des permutations dans $S_n$ dont les premiers $n-k$ entrées sont croissantes et dont la plus longue sous-suite croissante est de longueur $n-k$. Cette formule est d'abord apparue en conséquence de calculs sur les polynômes caractères des travaux récents de Adriano Garsia et Alain Goupil. Nous donnons deux preuves bijectifs "élémentaires" de cet résultat et de son q-analogue, une preuve employant le correspondance RSK et une autre n'employant que les permutations.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] permutations, longest increasing subsequence, q-analogue, major index, RSK

Consultation statistics

This page has been seen 343 times.
This article's PDF has been downloaded 440 times.