Discrete Mathematics & Theoretical Computer Science |

Let $G$ be a simple graph with $n$ vertices. The coloring complex$ Δ (G)$ was defined by Steingrímsson, and the homology of $Δ (G)$ was shown to be nonzero only in dimension $n-3$ by Jonsson. Hanlon recently showed that the Eulerian idempotents provide a decomposition of the homology group $H_{n-3}(Δ (G))$ where the dimension of the $j^th$ component in the decomposition, $H_{n-3}^{(j)}(Δ (G))$, equals the absolute value of the coefficient of $λ ^j$ in the chromatic polynomial of $G, _{\mathcal{χg}}(λ )$. Let $H$ be a hypergraph with $n$ vertices. In this paper, we define the coloring complex of a hypergraph, $Δ (H)$, and show that the coefficient of $λ ^j$ in $χ _H(λ )$ gives the Euler Characteristic of the $j^{th}$ Hodge subcomplex of the Hodge decomposition of $Δ (H)$. We also examine conditions on a hypergraph, $H$, for which its Hodge subcomplexes are Cohen-Macaulay, and thus where the absolute value of the coefficient of $λ ^j$ in $χ _H(λ )$ equals the dimension of the $j^{th}$ Hodge piece of the Hodge decomposition of $Δ (H)$.

Source : oai:HAL:hal-01186258v1

Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)

Section: Proceedings

Published on: January 1, 2010

Imported on: January 31, 2017

Keywords: coloring complex,hypergraph,chromatic polynomial,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 98 times.

This article's PDF has been downloaded 252 times.