Aaron D. Lauda ; Monica Vazirani
-
Crystals from categorified quantum groups
dmtcs:2839 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
-
https://doi.org/10.46298/dmtcs.2839
Crystals from categorified quantum groupsArticle
Authors: Aaron D. Lauda 1; Monica Vazirani 2
0000-0003-0871-4932##NULL
Aaron D. Lauda;Monica Vazirani
1 Department of Mathematics [Vancouver]
2 Department of Mathematics [Univ California Davis]
We study the crystal structure on categories of graded modules over algebras which categorify the negative half of the quantum Kac-Moody algebra associated to a symmetrizable Cartan data. We identify this crystal with Kashiwara's crystal for the corresponding negative half of the quantum Kac-Moody algebra. As a consequence, we show the simple graded modules for certain cyclotomic quotients carry the structure of highest weight crystals, and hence compute the rank of the corresponding Grothendieck group.
EMSW21-RTG: New Techniques in Low-Dimensional Topology and Geometry; Funder: National Science Foundation; Code: 0739392
Categorification of Quantum Groups; Funder: National Science Foundation; Code: 0855713
Bibliographic References
2 Documents citing this article
Andrea Appel;Ilknur Egilmez;Matthew Hogancamp;Aaron D. Lauda, 2018, A DG-extension of symmetric functions arising from higher representation theory, arXiv (Cornell University), 2, 2, pp. 169-214, 10.4171/jca/2-2-3, https://arxiv.org/abs/1704.00713.
Seok-Jin Kang;Masaki Kashiwara, 2012, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, arXiv (Cornell University), 190, 3, pp. 699-742, 10.1007/s00222-012-0388-1, https://arxiv.org/abs/1102.4677.