Aaron D. Lauda ; Monica Vazirani - Crystals from categorified quantum groups

dmtcs:2839 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2839
Crystals from categorified quantum groupsConference paper

Authors: Aaron D. Lauda ORCID1; Monica Vazirani 2

  • 1 Department of Mathematics [Vancouver]
  • 2 Department of Mathematics [Univ California Davis]

[en]
We study the crystal structure on categories of graded modules over algebras which categorify the negative half of the quantum Kac-Moody algebra associated to a symmetrizable Cartan data. We identify this crystal with Kashiwara's crystal for the corresponding negative half of the quantum Kac-Moody algebra. As a consequence, we show the simple graded modules for certain cyclotomic quotients carry the structure of highest weight crystals, and hence compute the rank of the corresponding Grothendieck group.

[fr]
Nous étudions la structure cristalline sur les catégories de modules gradués sur algèbres qui catégorifient la moitié négative du quantum de Kac-Moody algèbre associée à un ensemble de données symétrisables Cartan. Nous identifions ce cristal avec des cristaux de Kashiwara pour le négatif correspondant la moitié de l'algèbre de Kac-Moody quantum. En conséquence, nous montrons que les simples modules classés pour certains quotients cyclotomiques portent la structure des cristaux de poids le plus élevé, et donc calculons le rang du groupe correspondant Grothendieck.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Khovanov-Lauda-Rouquier algebras, quiver Hecke algebras, categorification
Funding:
    Source : OpenAIRE Graph
  • EMSW21-RTG: New Techniques in Low-Dimensional Topology and Geometry; Funder: National Science Foundation; Code: 0739392
  • Categorification of Quantum Groups; Funder: National Science Foundation; Code: 0855713

2 Documents citing this article

Consultation statistics

This page has been seen 376 times.
This article's PDF has been downloaded 390 times.