Discrete Mathematics & Theoretical Computer Science |

2840

- 1 Department of Mathematics [Seattle]
- 2 Department of Mathematics, University of Colorado

The standard supercharacter theory of the finite unipotent upper-triangular matrices $U_n(q)$ gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of $U_m(q) \subseteq U_n(q)$ for $m \leq n$ lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of $U_n(q)$ is a nonnegative integer linear combination of supercharacters of $U_m(q)$ (in fact, it is polynomial in $q$). In a first step towards understanding the combinatorics of coefficients in the branching rules of the supercharacters of $U_n(q)$, this paper characterizes when a given coefficient is nonzero in the restriction of a supercharacter and the tensor product of two supercharacters. These conditions are given uniformly in terms of complete matchings in bipartite graphs.

Source: HAL:hal-01186268v1

Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)

Section: Proceedings

Published on: January 1, 2010

Imported on: January 31, 2017

Keywords: unipotent upper-triangular matrices,supercharacters,set-partitions,matching,bipartite graphs,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Funding:

- Source : OpenAIRE Graph
*FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory*; Funder: National Science Foundation; Code: 0854893

This page has been seen 155 times.

This article's PDF has been downloaded 189 times.