E. Nevo ; T. K. Petersen - On $\gamma$-vectors satisfying the Kruskal-Katona inequalities

dmtcs:2842 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2842
On $\gamma$-vectors satisfying the Kruskal-Katona inequalitiesConference paper

Authors: E. Nevo 1; T. K. Petersen 2

[en]
We present examples of flag homology spheres whose $\gamma$-vectors satisfy the Kruskal-Katona inequalities. This includes several families of well-studied simplicial complexes, including Coxeter complexes and the simplicial complexes dual to the associahedron and to the cyclohedron. In these cases, we construct explicit flag simplicial complexes whose $f$-vectors are the $\gamma$-vectors in question, and so a result of Frohmader shows that the $\gamma$-vectors satisfy not only the Kruskal-Katona inequalities but also the stronger Frankl-Füredi-Kalai inequalities. In another direction, we show that if a flag $(d-1)$-sphere has at most $2d+3$ vertices its $\gamma$-vector satisfies the Frankl-Füredi-Kalai inequalities. We conjecture that if $\Delta$ is a flag homology sphere then $\gamma (\Delta)$ satisfies the Kruskal-Katona, and further, the Frankl-Füredi-Kalai inequalities. This conjecture is a significant refinement of Gal's conjecture, which asserts that such $\gamma$-vectors are nonnegative.

[fr]
Nous présentons des exemples de sphères d'homologie flag dont $\gamma$-vecteurs satisfaire les inégalités de Kruskal-Katona. Cela comprend plusieurs familles de bien étudiés simplicial complexes, y compris les complexes de Coxeter et les complexes simpliciaux dual de l'associahedron et à la cyclohedron. Dans ces cas, nous construisons explicite flag simplicial complexes dont les $f$-vecteurs sont les $\gamma$-vecteurs en question, et ainsi de suite de Frohmader montre que le $\gamma$-vecteurs de satisfaire non seulement les inégalités de Kruskal-Katona mais aussi les plus fortes inégalités Frankl-Füredi-Kalai. Dans une autre direction, nous montrons que, si un flag $(d-1)$-sphère a au plus $2d+3$ sommets son $\gamma$-vecteur satisfait aux inégalités de Frankl-Füredi-Kalai. Nous conjecture que, si $\Delta$ est une sphère d'homologie flag alors $\gamma(\Delta)$ satisfait aux inégalités de Kruskal-Katona, en outre, celles de Frankl-Füredi-Kalai. Cette conjecture est un raffinement significatif de la conjecture de Gal, qui affirme que ces $\gamma$-vecteurs sont nonnégatifs.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] simplicial complex, Coxeter complex, associahedron, Gal's conjecture, γ -vector
Funding:
    Source : OpenAIRE Graph
  • f-vectors of polytopes, spheres and arrangements; Funder: National Science Foundation; Code: 0757828

Consultation statistics

This page has been seen 340 times.
This article's PDF has been downloaded 506 times.