Pierre-Loïc Méliot
-
Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutations
dmtcs:2844 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
-
https://doi.org/10.46298/dmtcs.2844
Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutationsArticle
We show the $q$-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke algebra $\mathscr{H}_{n,q}$, if $(a_{\lambda \mu}^ν (n,q))_ν$ is the set of structure constants involved in the product of two Geck-Rouquier conjugacy classes $\Gamma_{\lambda, n}$ and $\Gamma_{\mu,n}$, then each coefficient $a_{\lambda \mu}^ν (n,q)$ depend on $n$ and $q$ in a polynomial way. Our proof relies on the construction of a projective limit of the Hecke algebras; this projective limit is inspired by the Ivanov-Kerov algebra of partial permutations.