Pierre-Loïc Méliot - Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutations

dmtcs:2844 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2844
Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutationsConference paper

Authors: Pierre-Loïc Méliot 1

[en]
We show the $q$-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke algebra $\mathscr{H}_{n,q}$, if $(a_{\lambda \mu}^ν (n,q))_ν$ is the set of structure constants involved in the product of two Geck-Rouquier conjugacy classes $\Gamma_{\lambda, n}$ and $\Gamma_{\mu,n}$, then each coefficient $a_{\lambda \mu}^ν (n,q)$ depend on $n$ and $q$ in a polynomial way. Our proof relies on the construction of a projective limit of the Hecke algebras; this projective limit is inspired by the Ivanov-Kerov algebra of partial permutations.

[fr]
Nous démontrons le $q$-analogue d'un résultat bien connu de Farahat et Higman : dans le centre de l'algèbre d'Iwahori-Hecke $\mathscr{H}_{n,q}$, si $(a_{\lambda \mu}^ν (n,q))_ν$ est l'ensemble des constantes de structure mises en jeu dans le produit de deux classes de conjugaison de Geck-Rouquier $\Gamma_{\lambda, n}$ et $\Gamma_{\mu,n}$, alors chaque coefficient $a_{\lambda \mu}^ν (n,q)$ dépend de façon polynomiale de $n$ et de $q$. Notre preuve repose sur la construction d'une limite projective des algèbres d'Hecke ; cette limite projective est inspirée de l'algèbre d'Ivanov-Kerov des permutations partielles.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Iwahori-Hecke algebras, Geck-Rouquier conjugacy classes, symmetric functions.

1 Document citing this article

Consultation statistics

This page has been seen 364 times.
This article's PDF has been downloaded 331 times.