Discrete Mathematics & Theoretical Computer Science |
A tropical curve $\Gamma$ is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system $|D|$ of a divisor $D$ on a tropical curve $\Gamma$ analogously to the classical counterpart. We investigate the structure of $|D|$ as a cell complex and show that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set of generators, $|D|$ defines a map from $\Gamma$ to a tropical projective space, and the image can be modified to a tropical curve of degree equal to $\mathrm{deg}(D)$. The tropical convex hull of the image realizes the linear system $|D|$ as a polyhedral complex.