Thomas Lam ; Aaron Lauve ; Frank Sottile - Skew Littlewood―Richardson rules from Hopf algebras

dmtcs:2853 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2853
Skew Littlewood―Richardson rules from Hopf algebrasConference paper

Authors: Thomas Lam 1; Aaron Lauve 2; Frank Sottile 2

  • 1 Department of Mathematics - University of Michigan
  • 2 Department of Mathematics [Austin]

[en]
We use Hopf algebras to prove a version of the Littlewood―Richardson rule for skew Schur functions, which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood―Richardson rules for Schur $P-$ and $Q-$functions and noncommutative ribbon Schur functions, as well as skew Pieri rules for k-Schur functions, dual k-Schur functions, and for the homology of the affine Grassmannian of the symplectic group.

[fr]
Nous utilisons des algèbres de Hopf pour prouver une version de la règle de Littlewood―Richardson pour les fonctions de Schur gauches, qui implique une conjecture d'Assaf et McNamara. Nous établissons également des règles de Littlewood―Richardson gauches pour les $P-$ et $Q-$fonctions de Schur et les fonctions de Schur rubbans non commutatives, ainsi que des règles de Pieri gauches pour les $k-$fonctions de Schur, les $k-$fonctions de Schur duales, et pour l'homologie de la Grassmannienne affine du groupe symplectique.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] symmetric functions, Littlewood―Richardson rule, Pieri rule, Hopf algebras, antipode
Funding:
    Source : OpenAIRE Graph
  • Applicable Algebraic Geometry: Real Solutions, Applications, and Combinatorics; Funder: National Science Foundation; Code: 0701050
  • FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects; Funder: National Science Foundation; Code: 0652641
  • Affine combinatorics, Schubert calculus, and total positivity; Funder: National Science Foundation; Code: 0901111

Consultation statistics

This page has been seen 341 times.
This article's PDF has been downloaded 368 times.