![]() |
Discrete Mathematics & Theoretical Computer Science |
Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in $P(n)$ is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related.
Source : ScholeXplorer
IsReferencedBy DOI 10.1007/s00233-019-10028-x
Alhajjar, Elie ; Russell, Travis ; Steward, Michael ; |