Jason Bandlow ; Jennifer Morse - The expansion of Hall-Littlewood functions in the dual Grothendieck polynomial basis

dmtcs:2860 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2860
The expansion of Hall-Littlewood functions in the dual Grothendieck polynomial basisArticle

Authors: Jason Bandlow 1; Jennifer Morse 2

A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was given a combinatorial expansion into monomials by Lam and Pylyavskyy using reverse plane partitions. We generalize charge to set-valued tableaux and use all of these combinatorial ideas to give a nice expansion of Hall-Littlewood polynomials into the dual Grothendieck basis. \par


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: symmetric functions,Hall-Littlewood polynomials,Grothendieck polynomials,charge statistic,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 250 times.
This article's PDF has been downloaded 296 times.