Florian Block - Computing Node Polynomials for Plane Curves

dmtcs:2861 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2861
Computing Node Polynomials for Plane CurvesConference paper

Authors: Florian Block 1

  • 1 Department of Mathematics - University of Michigan

[en]
According to the Göttsche conjecture (now a theorem), the degree $N^{d, \delta}$ of the Severi variety of plane curves of degree $d$ with $\delta$ nodes is given by a polynomial in $d$, provided $d$ is large enough. These "node polynomials'' $N_{\delta} (d)$ were determined by Vainsencher and Kleiman―Piene for $\delta \leq 6$ and $\delta \leq 8$, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute $N_{\delta} (d)$ for $\delta \leq 14$. Furthermore, we improve the threshold of polynomiality and verify Göttsche's conjecture on the optimal threshold up to $\delta \leq 14$. We also determine the first 9 coefficients of $N_{\delta} (d)$, for general $\delta$, settling and extending a 1994 conjecture of Di Francesco and Itzykson.

[fr]
Selon la Conjecture de Göttsche (maintenant un Théorème), le degré $N^{d, \delta}$ de la variété de Severi des courbes planes de degré $d$ avec $\delta$ noeuds est donné par un polynôme en $d$, pour $d$ assez grand. Ces $\textit{polynômes de nœuds}$ $N_{\delta} (d)$ ont été déterminés par Vainsencher et Kleiman―Piene pour $\delta \leq 6$ et $\delta \leq 8$, respectivement. S'appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de nœuds, et l'utilisons pour calculer $N_{\delta} (d)$, pour $\delta \leq 14$. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu'à $\delta \leq 14$. Nous déterminons aussi les 9 premiers coéfficients de $N_{\delta} (d)$, pour un $\delta$ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Severi degree, curve enumeration, plane curve, node polynomial, labeled floor diagram.
Funding:
    Source : OpenAIRE Graph
  • Deep Drug Discovery and Deployment; Funder: Fundação para a Ciência e a Tecnologia, I.P.; Code: PTDC/CCI-BIO/29266/2017

15 Documents citing this article

Consultation statistics

This page has been seen 330 times.
This article's PDF has been downloaded 370 times.