Aaron Lauve ; Sarah K Mason - QSym over Sym has a stable basis

dmtcs:2866 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2866
QSym over Sym has a stable basisConference paper

Authors: Aaron Lauve 1; Sarah K Mason 2

  • 1 Department of Mathematics [Austin]
  • 2 Department of Mathematics

[en]
We prove that the subset of quasisymmetric polynomials conjectured by Bergeron and Reutenauer to be a basis for the coinvariant space of quasisymmetric polynomials is indeed a basis. This provides the first constructive proof of the Garsia―Wallach result stating that quasisymmetric polynomials form a free module over symmetric polynomials and that the dimension of this module is $n!$.

[fr]
Nous prouvons que le sous-ensemble des polynômes quasisymétriques conjecturé par Bergeron et Reutenauer pour former une base pour l'espace coinvariant des polynômes quasisymétriques est en fait une base. Cela fournit la première preuve constructive du résultat de Garsia―Wallach indiquant que les polynômes quasisymétriques forment un module libre sur les polynômes symétriques et que la dimension de ce module est $n!$.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] quasisymmetric functions, symmetric functions, free modules, compositions, inverting compositions
Funding:
    Source : OpenAIRE Graph
  • PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0603351

7 Documents citing this article

Consultation statistics

This page has been seen 334 times.
This article's PDF has been downloaded 462 times.