Anouk Bergeron-Brlek - Words and Noncommutative Invariants of the Hyperoctahedral Group

dmtcs:2870 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2870
Words and Noncommutative Invariants of the Hyperoctahedral GroupArticle

Authors: Anouk Bergeron-Brlek 1

  • 1 Department of Mathematics and Statistics [Toronto]

Let $\mathcal{B}_n$ be the hyperoctahedral group acting on a complex vector space $\mathcal{V}$. We present a combinatorial method to decompose the tensor algebra $T(\mathcal{V})$ on $\mathcal{V}$ into simple modules via certain words in a particular Cayley graph of $\mathcal{B}_n$. We then give combinatorial interpretations for the graded dimension and the number of free generators of the subalgebra $T(\mathcal{V})^{\mathcal{B}_n}$ of invariants of $\mathcal{B}_n$, in terms of these words, and make explicit the case of the signed permutation module. To this end, we require a morphism from the Mantaci-Reutenauer algebra onto the algebra of characters due to Bonnafé and Hohlweg.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: words.,Tensor algebras,invariants of finite groups,hyperoctahedral group,signed permutation module,Cayley graph,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

Consultation statistics

This page has been seen 300 times.
This article's PDF has been downloaded 226 times.