Felix Breuer ; Aaron Dall - Viewing counting polynomials as Hilbert functions via Ehrhart theory

dmtcs:2871 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2871
Viewing counting polynomials as Hilbert functions via Ehrhart theoryConference paper

Authors: Felix Breuer 1,2; Aaron Dall 1,2

[en]
Steingrímsson (2001) showed that the chromatic polynomial of a graph is the Hilbert function of a relative Stanley-Reisner ideal. We approach this result from the point of view of Ehrhart theory and give a sufficient criterion for when the Ehrhart polynomial of a given relative polytopal complex is a Hilbert function in Steingrímsson's sense. We use this result to establish that the modular and integral flow and tension polynomials of a graph are Hilbert functions.

[fr]
Steingrímsson (2001) a montré que le polynôme chromatique d'un graphe est la fonction de Hilbert d'un idéal relatif de Stanley-Reisner. Nous abordons ce résultat du point de vue de la théorie d'Ehrhart et donnons un critère suffisant pour que le polynôme d'Ehrhart d'un complexe polytopal relatif donné soit une fonction de Hilbert au sens de Steingrímsson. Nous utilisons ce résultat pour établir que les polynômes de flux et de tension modulaires et intégraux d'un graphe sont des fonctions de Hilbert.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Hilbert function, lattice polytope, relative Stanley-Reisner ring, tension polynomial, flow polynomial, relative polytopal complex

1 Document citing this article

Consultation statistics

This page has been seen 363 times.
This article's PDF has been downloaded 403 times.