Sophie Burrill ; Marni Mishna ; Jacob Post - On $k$-crossings and $k$-nestings of permutations

dmtcs:2873 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2873
On $k$-crossings and $k$-nestings of permutationsConference paper

Authors: Sophie Burrill 1; Marni Mishna 1; Jacob Post 2

  • 1 Department of Mathematics [Burnaby]
  • 2 Department of Computer Science

[en]
We introduce $k$-crossings and $k$-nestings of permutations. We show that the crossing number and the nesting number of permutations have a symmetric joint distribution. As a corollary, the number of $k$-noncrossing permutations is equal to the number of $k$-nonnesting permutations. We also provide some enumerative results for $k$-noncrossing permutations for some values of $k$.

[fr]
Nous introduisons les $k$-chevauchement d'arcs et les $k$-empilements d'arcs de permutations. Nous montrons que l'index de chevauchement et l'index de empilement ont une distribution conjointe symétrique pour les permutations de taille $n$. Comme corollaire, nous obtenons que le nombre de permutations n'ayant pas un $k$-chevauchement est égal au nombre de permutations n'ayant un $k$-empilement. Nous fournissons également quelques résultats énumératifs.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] crossing, nesting, permutation, enumeration
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

3 Documents citing this article

Consultation statistics

This page has been seen 387 times.
This article's PDF has been downloaded 486 times.