Charles Buehrle ; Mark Skandera - A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups

dmtcs:2874 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2874
A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups Conference paper

Authors: Charles Buehrle 1; Mark Skandera ORCID1

  • 1 Department of Mathematics

[en]
We use a quantum analog of the polynomial ring $\mathbb{Z}[x_{1,1},\ldots, x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $H_n(q)$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math.}$ $\textbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new vanishing results for immanants in the quantum polynomial ring.

[fr]
Nous utilisons un analogue quantique de l'anneau $\mathbb{Z}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$H_n(q)$ irréductibles. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math.}$ $\textbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Notre résultat principal dépend de nouveaux résultats de disparition pour des immanants dans l'anneau polynôme de quantique.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Kazhdan-Lusztig, immanants, irreducible representations, Hecke algebra

Consultation statistics

This page has been seen 323 times.
This article's PDF has been downloaded 448 times.