Charles Buehrle ; Mark Skandera
-
A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups
dmtcs:2874 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2010,
DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
-
https://doi.org/10.46298/dmtcs.2874
A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups Article
Authors: Charles Buehrle 1; Mark Skandera 1
NULL##NULL
Charles Buehrle;Mark Skandera
1 Department of Mathematics
We use a quantum analog of the polynomial ring $\mathbb{Z}[x_{1,1},\ldots, x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $H_n(q)$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math.}$ $\textbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new vanishing results for immanants in the quantum polynomial ring.