Philippe Nadeau - Fully Packed Loop configurations in a triangle and Littlewood Richardson coefficients

dmtcs:2881 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) - https://doi.org/10.46298/dmtcs.2881
Fully Packed Loop configurations in a triangle and Littlewood Richardson coefficientsConference paper

Authors: Philippe Nadeau ORCID1,2

[en]
We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence relations with coefficients computed from TFPL configurations. We then give constraints and enumeration results for certain classes of TFPL configurations. For special boundary conditions, we show that TFPLs are counted by the famous Littlewood Richardson coefficients.

[fr]
Nous nous intéressons aux configurations de "Fully Packed Loops'' dans un triangle (TFPL), introduites par Caselli et al. et étudiées par Thapper. Nous montrons que pour les Fully Packed Loops avec un couplage donné, il existe des relations de récurrence linéaires dont les coefficients sont calculés à partir de certains TFPLs. Nous donnons ensuite des contraintes et des résultats énumératifs pour certaines familles de TFPLs. Pour certaines conditions au bord, nous montrons que le nombre de TFPL est donné par les coefficients de Littlewood Richardson.


Volume: DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
Section: Proceedings
Published on: January 1, 2010
Imported on: January 31, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Razumov Stroganov conjecture, Fully Packed Loop, Littlewood―Richardson coefficients
Funding:
    Source : OpenAIRE Graph
  • Klassische Kombinatorik und Anwendungen; Code: Z 130

Consultation statistics

This page has been seen 390 times.
This article's PDF has been downloaded 299 times.